25 research outputs found

    The Effects of Task, Task Mapping, and Layout Space on User Performance in Information-Rich Virtual Environments

    Get PDF
    How should abstract information be displayed in Information-Rich Virtual Environments (IRVEs)? There are a variety of techniques available, and it is important to determine which techniques help foster a user’s understanding both within and between abstract and spatial information types. Our evaluation compared two such techniques: Object Space and Display Space. Users strongly prefer Display Space over Object Space, and those who use Display Space may perform better. Display Space was faster and more accurate than Object Space for tasks comparing abstract information. Object Space was more accurate for comparisons of spatial information. These results suggest that for abstract criteria, visibility is a more important requirement than perceptual coupling by depth and association cues. They also support the value of perceptual coupling for tasks with spatial criteria

    Inorganic Polyphosphates Are Important for Cell Survival and Motility of Human Skin Keratinocytes and Play a Role in Wound Healing

    Get PDF
    Inorganic polyphosphate (polyP) is a simple ancient polymer of linear chains of orthophosphate residues linked by high energy phospho-anhydride bonds ubiquitously found in all organisms. Despite its structural simplicity, it plays diverse functional roles. polyP is involved in myriad of processes including serving as microbial phosphagens, buffer against alkalis, Ca2+ storage, metal-chelating agents, pathogen virulence, cell viability and proliferation, structural component and chemical chaperones, and in the microbial stress response. In mammalian cells, polyP has been implicated in blood coagulation, inflammation, bone differentiation, cell bioenergetics, signal transduction, Ca2+-signaling, neuronal excitability, as a protein-stabilizing scaffold, and in wound healing, among others. This chapter will discuss (1) polyP metabolism and roles of polyP in prokaryotic and eukaryotic cells, (2) the contribution of polyP to survival, cell proliferation, and motility involved in wound healing in human skin keratinocytes, (3) the use of polyP-containing platelet-rich plasma (PRP) to promote wound healing in acute and chronic wounds, including burns, and (4) the use of polyP-containing PRP in excisional wound models to promote faster healing. While polyP shows promise as a therapeutic agent to accelerate healing for acute and chronic wounds, the molecular mechanisms as a potent modulator of the wound healing process remain to be elucidated

    Winner in the ring: Advantages of the Watusi collar in management of post-burn neck scar contractures

    No full text
    Objective: Burns to the neck are prone to the development of scarring and contracture. In addition to other modalities of rehabilitation, effective splinting is crucial in the achievement of optimal functional outcomes. This paper describes the use of the custom-made Watusi collar in patients with neck burns. Methods: Methods of splint manufacture are described, based on current institutional therapist practice. A series of patients with neck burns managed by splinting with the Watusi collar are discussed, as are patients treated in outreach efforts to Malawi. Results: Patients treated with the Watusi collar at a Burn Center as well as those managed by local practitioners in Malawi found the splint to be more comfortable than alternatives and therefore were compliant with their use. Care providers in Malawi were affordably and easily able to adapt the Watusi collar to available materials. Conclusions: The Watusi collar is a valuable option for the management of neck scars and contractures after burn injury. These splints are affordable, customizable and enable compliance through increased patient comfort. Initial international outreach efforts demonstrate potential benefits of these collars in resource-limited regions. Keywords: Watusi collar, Neck burn, Neck splint

    Transcriptomics of Wet Skin Biopsies Predict Early Radiation-Induced Hematological Damage in a Mouse Model

    No full text
    The lack of an easy and fast radiation-exposure testing method with a dosimetric ability complicates triage and treatment in response to a nuclear detonation, radioactive material release, or clandestine exposure. The potential of transcriptomics in radiation diagnosis and prognosis were assessed here using wet skin (blood/skin) biopsies obtained at hour 2 and days 4, 7, 21, and 28 from a mouse radiation model. Analysis of significantly differentially transcribed genes (SDTG; p ≤ 0.05 and FC ≥ 2) during the first post-exposure week identified the glycoprotein 6 (GP-VI) signaling, the dendritic cell maturation, and the intrinsic prothrombin activation pathways as the top modulated pathways with stable inactivation after lethal exposures (20 Gy) and intermittent activation after sublethal (1, 3, 6 Gy) exposure time points (TPs). Interestingly, these pathways were inactivated in the late TPs after sublethal exposure in concordance with a delayed deleterious effect. Modulated transcription of a variety of collagen types, laminin, and peptidase genes underlay the modulated functions of these hematologically important pathways. Several other SDTGs related to platelet and leukocyte development and functions were identified. These results outlined genetic determinants that were crucial to clinically documented radiation-induced hematological and skin damage with potential countermeasure applications

    Transcriptomes of Wet Skin Biopsies Predict Outcomes after Ionizing Radiation Exposure with Potential Dosimetric Applications in a Mouse Model

    No full text
    Countermeasures for radiation diagnosis, prognosis, and treatment are trailing behind the proliferation of nuclear energy and weaponry. Radiation injury mechanisms at the systems biology level are not fully understood. Here, mice skin biopsies at h2, d4, d7, d21, and d28 after exposure to 1, 3, 6, or 20 Gy whole-body ionizing radiation were evaluated for the potential application of transcriptional alterations in radiation diagnosis and prognosis. Exposure to 20 Gy was lethal by d7, while mice who received 1, 3, or 6 Gy survived the 28-day time course. A Sammon plot separated samples based on survival and time points (TPs) within lethal (20 Gy) and sublethal doses. The differences in the numbers, regulation mode, and fold change of significantly differentially transcribed genes (SDTGs, p 2) were identified between lethal and sublethal doses, and down and upregulation dominated transcriptomes during the first post-exposure week, respectively. The numbers of SDTGs and the percentages of upregulated ones revealed stationary downregulation post-lethal dose in contrast to responses to sublethal doses which were dynamic and largely upregulated. Longitudinal up/downregulated SDTGs ratios suggested delayed and extended responses with increasing IR doses in the sublethal range and lethal-like responses in late TPs. This was supported by the distributions of common and unique genes across TPs within each dose. Several genes with potential dosimetric marker applications were identified. Immune, fibrosis, detoxification, hematological, neurological, gastric, cell survival, migration, and proliferation radiation response pathways were identified, with the majority predicted to be activated after sublethal and inactivated after lethal exposures, particularly during the first post-exposure week

    Hypopigmented burn hypertrophic scar contains melanocytes that can be signaled to re-pigment by synthetic alpha-melanocyte stimulating hormone in vitro.

    No full text
    There are limited treatments for dyschromia in burn hypertrophic scars (HTSs). Initial work in Duroc pig models showed that regions of scar that are light or dark have equal numbers of melanocytes. This study aims to confirm melanocyte presence in regions of hypo- and hyper-pigmentation in an animal model and patient samples. In a Duroc pig model, melanocyte presence was confirmed using en face staining. Patients with dyschromic HTSs had demographic, injury details, and melanin indices collected. Punch biopsies were taken of regions of hyper-, hypo-, or normally pigmented scar and skin. Biopsies were processed to obtain epidermal sheets (ESs). A subset of ESs were en face stained with melanocyte marker, S100β. Melanocytes were isolated from a different subset. Melanocytes were treated with NDP α-MSH, a pigmentation stimulator. mRNA was isolated from cells, and was used to evaluate gene expression of melanin-synthetic genes. In patient and pig scars, regions of hyper-, hypo-, and normal pigmentation had significantly different melanin indices. S100β en face staining showed that regions of hyper- and hypo-pigmentation contained the same number of melanocytes, but these cells had different dendricity/activity. Treatment of hypo-pigmented melanocytes with NDP α-MSH produced melanin by microscopy. Melanin-synthetic genes were upregulated in treated cells over controls. While traditionally it may be thought that hypopigmented regions of burn HTS display this phenotype because of the absence of pigment-producing cells, these data show that inactive melanocytes are present in these scar regions. By treating with a pigment stimulator, cells can be induced to re-pigment
    corecore